Pages

Thursday, May 16, 2013

Dirac, anti-Dirac Seas and A Rotating Universe

It has been a long time that speculation on the rotating universe rose among the physicists. A rotating universe, however, would have a preferred spin axis – a special direction in space instead of homogeneous and isotropic space – violating the very foundation of modern cosmology. 

The Grand Relativity Theory which hinges on the interaction of the two opposite 4D-energy seas (Dirac and anti-Dirac seas), between which our 3D-universe (hypersurface) is located, may explain such phenomenon. As these energy seas have opposite charges, they would exert strong opposite angular momentum (clockwise and counterclockwise directions) on either side of the hypersurface. 

Under such a dynamic system, two kinds of hypersurface rotations are possible i.e. rotation about the axis lying across its surface (time-like rotation) and about the axis normal to it (space-like rotation). The former rotation determines the direction of dynamical time (Figure-1A) that we experience as a passage of time, a feeling that time is running, while the latter rotation may turn around the whole universe and spin all objects within (Figure-1B).








But the turning around of the whole universe requires a very specific condition. It may happen only if there is an excess of clockwise or counter-clockwise rotation of the two energy (Dirac and anti-Dirac) seas. The entire universe would have a net angular momentum and have, therefore, a preferred right or left "handedness". This means that the mirror symmetry ("parity") of the whole universe is violated on the largest scales. Otherwise, the parity is preserved and the whole universe is not rotating. But even in this case, the local objects (subatomic and atomic particles, planets, solar systems, galaxies, super-galaxies, etc.) may spin as far as their left and right-handed rotations are in par. 

This ambiguity as of whether the whole universe is rotating or not could be solved only by direct astronomical observations. The recent study done by Professor Michael Longo and his team a) at the University of Michigan over 15,000 galaxies in the northern hemisphere indicates that above the plane of Milky Way, spiral galaxies which are spinning in a counterclockwise are seven percent more than those spinning clockwise.

A separate study done over around 8300 spiral galaxies in the southern galactic hemisphere indicates that below the galactic plane, on the contrary, spiral galaxies whirling in a clockwise direction are more than that of counterclockwise. The discovery of an excess of counter-clockwise rotating spiral galaxies in the part of the sky toward the northern hemisphere and the opposite toward the southern hemisphere indicates that the universe has not to mirror symmetry. The survey coverage, however, extended out to only 5 percent of the distance to the farthest observed galaxies (around 600 million light-years from Earth).

The small excess which is calculated at about 7 percent within the region extending not even one per mil of the total volume of the visible universe may be only local inhomogeneity of much larger universe which might be more homogeneous and isotropic.  Our intuition tells us that it should be most likely the case b).








However, as we experience the passage of time in our daily life, the time-like rotation of the hypersurface that creates such feeling should be real. The excess of clockwise or counterclockwise rotations which makes this time-like rotation if does not occur universally at least regionally, for example, at the extreme sides of the universe. This may be the consequence of the Dirac and anti-Dirac seas' skew symmetry rather than mirror symmetry parity (Figure-2), which becomes more and more accentuated during the lifecycle of the rotation. And the same mechanism might also come about for the space-like rotation.




Notes:



a.  The result of the study is, of course, devoted to enhancing the Big Bang cosmology, but we can take advantage of it to support our Grand Relativity Theory. 

b.  However, in ordinary life, various phenomena violate parity in microscopic scales. Such phenomena, for example, may be observed in nuclear beta decays and amino acids which have a strong preference for left-handed, rather than right-handed.  


Share/Bookmark

Wednesday, April 17, 2013

What’s Wrong with Dirac Sea’s Existence?


The attempts to incorporate the special relativity principle into quantum mechanics always leads to the solution of negative energy states pairing with positive energy states. Klein-Gordon's and Dirac equations are among those having such property.  However, physicists cannot afford to take on such energy's negativity as physical reality since they believe that it may lead to a catastrophic instability of the entire universe.

The root of the problem comes from the solution ambiguity of the relativistic expression for energy, E = ± (m2c4 + p2c2½. In classical physics, one can straightforwardly keep the solution bearing positive values separated from that taking the negative ones.  In quantum mechanics, however, things become complicated. One should then deal with operators acting on complex functions, giving way two square roots of complex-number terms that do not tend to separate neatly into positive and negative in a globally consistent way 1.

But this is what happens in reality. In the real world, those two opposite energies split only momentarily before they once again mingle together. This phenomenon repeats itself, making the 3-interface between those two energy oceans appear and disappear perpetually.




This interface, the 3-dimensional space we live in, seems to be something that evaporates completely as one moment passes and reappears as a completely different space as the next moment arrives two, which makes our universe incredibly dynamic.

Such as the beautiful translation of the mathematics formulation to the deeper workings of the physical universe may go beyond most people's wildest imaginations. Alas, even a prominent mathematical physicist such as Roger Penrose, has missed such insight. This continuous "catastrophic" instability that he was worrying so much is, in fact, the underlying reality of dynamic time. The energy's duality and polarity are the most fundamental of the relativity principles, the cosmos' prime mover, without which the world would remain sterile, timeless, and standstill.

When Dirac formulated his equation, being unable to get rid of the unwanted negative energy. He posited the presence of the sea of negative energy states, later known as the Dirac Sea. However, physicists are not comfortable with such a bold idea and reinterpret it as corresponding to antiparticles with positive energy.

Dirac, alas, didn't elaborate further about his energy sea, such as its location, how it came to be, etc. The answer is, in fact, relatively simple. The Dirac Sea must be present side by side with the sea of positive energy we refer to as anti-Dirac Sea (Figure-1). Both of them should be 4-dimensional conforming to the dimensionality of the spacetime they "occupy." The 3-dimensional interface naturally occurs between the two energy seas is nothing but the physical space we inhabit.

This kind of depiction greatly facilitates us in describing quantum fields, which so far seem to appear from nowhere, omnipresent, capable of creating and annihilating quantum particles. The interaction between the opposing energy potencies in Dirac and anti-Dirac seas giving rise to quantum fields, piercing through the 3-interface igniting quantum sparks ("quarks"), which appear and disappear perpetually on its surface (Figure-2).

Having elaborated that, we can now explain Fred Hoyle's C-field in a similar way. Hoyle hypothesized the existence of something similar to the Dirac Sea that continuously generates the fields. He further posited that the C-field had negative pressure and drove the expansion of the universe.  
Subsequently, within the context of the standard model, Peter Higgs introduced fields, which later bore his name, capable of stimulating particles to acquire mass. Alas, he was silent about the nature and origin of Higgs fields or the existence sort of negative energy sea.

Another fundamental relativity principle underlying any process of creation is the spontaneous symmetry breaking. A preexisting energy sea, later on, splits into positive and negative energy (Dirac anti-Dirac seas) as what they are now. However, that symmetry breaking doesn't take place all at once but gradually (Figure-3), giving us a perception that the universe is expanding. This hypothesis is evidence against that of the "quantum" primordial explosion of Big Bang theory.

References:

1.     Penrose, R.: ”The Road to Reality," Vintage Books, London, 2005, p. 615
2.     ibid, p. 387



Share/Bookmark